A volumetric technique for fossil body mass estimation applied to Australopithecus afarensis

Charlotte A. Brassey a,*, 1, Thomas G. O’Mahoney b, 1, Andrew T. Chamberlain b, William I. Sellers b

a School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
b School of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK

1. Introduction

Body mass is a critical constraint on an organism’s ecology, physiology, and biomechanics, and is a required input parameter in many ecological and functional analyses. For paleontologists, it is thus highly desirable to reconstruct body mass for fossil species. Indeed, important studies concerning the evolution of brain size (McHenry, 1976), locomotor kinematics (Polk, 2004), and energetics (Steudel-Numbers, 2006) in hominins have all required reliable fossil body mass estimates.

The fossil record is, however, extremely fragmentary and the majority of specimens are known only from isolated elements. For this reason, the most common approach to mass estimation exploits a tight correlation between body mass and a given skeletal dimension or dimensions in a modern calibration dataset to derive a predictive equation. Within the field of physical anthropology, cranial metrics have been used in a predictive capacity, including orbital area (Kappelman, 1996), orbital height (Aiello and Wood, 1994), and facial breadth (Spocter and Manger, 2007). However, far more common are mass prediction equations based on post-cranial elements, which Auerbach and Ruff (2004) subdivide into ‘mechanical’ and ‘morphometric’ methods on the basis of the chosen skeletal element. Mechanical techniques employ post-cranial, mass supporting structures as a basis for predictive equations,

* Corresponding author.
E-mail address: c.brassey@mmu.ac.uk (C.A. Brassey).
1 These authors contributed equally to this work.
centrum area (McHenry, 1976), femoral head and neck breadth (Ruff et al., 1991), and humeral and radial head diameter (McHenry, 1992). Alternatively, morphometric techniques reconstruct fossil mass based on the direct assessment of body size and shape. For example, a series of studies (Ruff, 1994, 2000; Ruff et al., 2005) have found the combination of stature and biiliac breadth to provide relatively accurate estimates of body mass when applied to modern humans. Footprint area (as measured from fossil trackways) has even been used as a means of reconstructing hominin body mass (Dingwall et al., 2013; Masao et al., 2016).

Whilst bivariate and multivariate mass predictive equations benefit from their applicability to fragmentary material and the ability to generate large modern comparative datasets, there are associated disadvantages: which skeletal element to use, extrapolation, biasing by robust/gracile elements, and mass and inertia properties.

1.1. Which skeletal element to use?

When numerous skeletal elements are available for a particular fossil individual, it may be unclear which bony dimension ought to be used as a basis for mass prediction. If both a complete femur and tibia are available, for example, either could be considered a suitable mass-supporting structure upon which to base a fossil mass estimate. Yet previous research estimating body mass for non-primate fossil mammals demonstrates that estimates can span two orders of magnitude for the same individual depending upon which limb bone or skeletal metric was used for prediction (Fariña et al., 1998). This example includes unusually proportioned mammals such as xenarthrans, and mass estimates for fossil hominins are not known to vary to such a degree (e.g., McHenry’s [1992] estimates for the A. afarensis skeleton A.L. 288-1 based on different anatomical parts range between 11.8 and 37.1 kg). However, McHenry and Berger (1998) do highlight the potential for hominin mass estimates to vary considerably depending upon the use of forelimb or hind limb joint size as the basis for the predictive equation. Ultimately, a decision must still be made on which equation to use, taking into account the predictive power of the model (r² or percentage prediction error) and the existence of taphonomic damage or unusual morphology, for example, that may otherwise bias the result.

1.2. Extrapolation

Whilst typically less extreme in paleoanthropology compared to other disciplines of vertebrate paleontology, body mass estimations are often conducted on fossil specimens lying outside the range of body sizes occupied by the modern calibration dataset. Potential dwarfism (Brown et al., 2004; Vancaza, 2005; Holliday and Fransiscus, 2009; Stein et al., 2010; Herridge and Lister, 2012) and gigantism (Millien and Bovy, 2010; Bates et al., 2015) are recurrent themes for fossil mass reconstructions, yet by their very nature they require an extrapolation of a predictive relationship beyond the modern range. In such instances, extrapolated predictions should be regarded as extremely speculative (Smith, 2002) due to a lack of evidence that the linear model holds beyond the extant dataset and a rapid widening of confidence intervals around the prediction.

1.3. Biasing by robust/gracile elements

Underlying the theory of bivariate/multivariate mass prediction is the assumption that the relationship between mass and a given skeletal dimension identified in modern species also holds for the fossil species of interest. In some instances, however, we can intuitively appreciate that species may be characterized by unusually proportioned skeletal elements (the elongated canines of sabertoothed cats or the robust hind the limb bones of some moa birds, for example). When placed into the context of the rest of the body, such enlarged/reduced features are obvious. Should such structures be used as a basis for mass estimation, however, unfeasibly large/small fossil species will be reconstructed (Braddy et al., 2008 versus Kaiser and Klok, 2008; Brassey et al., 2013). This is a particular concern when dealing with isolated elements in the absence of complete skeletons, where relative robustness/ gracility cannot be known. In physical anthropology, for example, the mass estimation of Gigantopithecus on the basis of molar size (Conroy, 1987) or mandible size (Fleagle, 2013) is vulnerable to this problem.

1.4. Mass and inertia properties

Currently, traditional allometric predictive relationships produce a solely scalar value for body mass (i.e., X species weighed Y kg). Whilst these single values may be of use in subsequent ecological analyses or evolutionary models, they are not informative with regards to how said mass is distributed around the body. Inertial properties (including mass, center of mass, and moments of inertia) are essential when conducting biomechanical simulations such as multibody dynamic analyses of locomotion and feeding. Previous biomechanical analyses of fossil hominins have therefore reconstructed inertial parameters on the basis of modern human and chimpanzee values (Crompton et al., 1998; Kramer and Eck, 2000; Sellers et al., 2004), due to a lack of viable alternatives.

1.5. Volumetric techniques

For the above reasons, volumetric mass estimation techniques have become increasingly popular within the field of vertebrate paleontology (see Brassey, 2017 and references therein). Historically, volume based estimates required the sculpting of scale models and the estimation of volume via fluid displacement (Gregory, 1905; Colbert, 1962; Alexander, 1985). However, as part of the recent shift towards ‘virtual paleontology’ (Sutton et al., 2014; as characterized by the increased application of digital imaging techniques such as computed tomography, laser scanning, and photogrammetry), three-dimensional (3D) computational modeling of fossil species is becoming increasingly common. As articulated skeletons are digitized faster and with greater accuracy, volumetric mass estimation techniques now involve the fitting of simple geometric shapes (Gunga et al., 1995, 1999) or more complex contoured surfaces (Hutchinson et al., 2007; Bates et al., 2009) to digital skeletal models within computer-aided design (CAD) packages. Volumetric approaches overcome many of the limitations associated with traditional allometric mass estimation methods, including the need to extrapolate predictive models and rely upon single elements, whilst also allowing inertial properties to be calculated if desired.

Both physical sculpting and digital CAD ‘sculpting’ of 3D models inevitably involves some degree of artistic interpretation, however. By attempting to reconstruct the external appearance of an extinct species, assumptions must be made regarding the volume and distribution of soft tissues beyond the extent of the skeleton. Whilst those undertaking such modeling necessarily rely upon their experience as anatomists to inform reconstructions, previous research has found resulting mass estimates to be sensitive to the individual carrying out the procedure (Hutchinson et al., 2011). The convex hulling technique applied in the present paper was therefore developed with the aim of incorporating many of the benefits associated with volumetric mass estimation, whilst overcoming the subjectivity inherent in ‘sculpted’ models (Sellers et al., 2012).
A convex hull is a geometric construct commonly used within mathematical sciences. The convex hull of \(n \) points is simply the minimum size convex polytope that still contains \(n \) (Fig. 1). In two dimensions, the process is analogous to stretching an elastic band around a series of points, with the band ‘snapping-to’ the outermost points. The ultimate form of the hull is dictated by a small number of points lying at the extremities, and for a given set of points, there is a unique convex hull. Two-dimensional (2D) convex hulls have often been applied in ecology as a means of defining the range size of wild animals (Harris et al., 1990 and references therein) or quantifying population niche width around stable isotopic data (Syvaranta et al., 2013). A 3D convex hull can, likewise, be fitted to a suite of \(x \), \(y \), \(z \) coordinates to form a tight-fitting 3D polyhedron (Fig. 2). Three-dimensional convex hulls are more commonly applied within the fields of robotics and computer games design to rapidly detect potential collisions between objects (Jiménez et al., 2001), but have also been applied in the biological sciences to estimate volume of crop yield (Herrero-Huerta et al., 2015) or canopy foliage (Cheein and Guivant, 2014).

Sellers et al. (2012) initially developed the convex hull mass prediction technique on a dataset of modern quadrupedal mammals. Using a light detection and range (LiDAR) scanner, the articulated skeletons of 14 mammals located within the main gallery of the Oxford University Museum of Natural History (OUMNH) were digitized. Point clouds corresponding to individual skeletons were isolated from the larger gallery scan and each skeleton subdivided into functional units (e.g., head, neck, thigh, shank, and trunk). Convex hulls were fitted to the point clouds representing all functional units, and the total convex hull volume of the skeleton was calculated as the sum of individual segments (Fig. 2). Total convex hull volume was subsequently multiplied by a literature value for body density to produce a convex hull mass and regressed against body mass to produce a linear bivariate predictive equation. The model was characterized by a high correlation coefficient and percentage standard error of the estimate (%SEE) of approximately 20%.

In some respects, convex hulling is a hybrid technique, combining volumetric data from an articulated skeletal model with the more traditional allometric mass estimation approach. By incorporating data from the entire skeleton, the technique may be less sensitive to particularly robust or gracile elements than previous approaches, and no decision need be made regarding which particular bone to base estimates upon. As a volumetric technique, convex hulling may also provide values for segment inertial
properties whilst avoiding the subjectivity inherent within previous sculpting techniques. The initial Sellers et al. (2012) application of convex hulling did, however, require a literature value for body density to be assigned to the modern dataset, which was itself heavily dominated by ungulates.

Subsequent applications of the convex hulling procedure have sought to overcome some of the above concerns. Brassey and Sellers (2014) directly regressed convex hull volume against body mass to generate scaling equations for both mammals (including primates) and birds, without the requirement to assign a literature value for body density. There is an inherent assumption, however, that the body density of the fossil species falls within the range of values occupied by the modern taxa. Furthermore, Brassey et al. (2013, 2016) produced additional convex hull predictive equations based upon modern ratites and pigeons for application to the mass estimation of the extinct moa and dodo, respectively.

The partial *A. afarensis* skeleton A.L. 288-1 (‘Lucy’) is one of the most complete Pliocene hominin skeletons found to date, with over 40% of the skeleton preserved, including the pelvis and most of the upper and lower limbs represented by at least one side (Johanson and Edey, 1981; Johanson et al., 1982a, b). The only other *A. afarensis* remains approaching such percentage preservation is the Woranso-Mille specimen (Haile-Selassie et al., 2010a, b), with other relatively complete specimens including the *Australopithecus sediba* remains from Malapa (Berger et al., 2010) and the ‘Little Foot’ skeleton, attributed to *Australopithecus prometheus* (Clarke, 1998). Unsurprisingly, A.L. 288-1 has therefore been subject to a wealth of mass estimation studies spanning the last 35 years (Fig. 3).

Due to the relative completeness of the specimen, previous mass estimates of A.L. 288-1 have been based upon axial, sacral, forelimb, and hind limb elements, and indeed multivariate models incorporating several elements. Table 1 details the results of McHenry’s (1992) often-cited study, in which the body mass of A.L. 288-1 was estimated on the basis of several skeletal elements using both
McHenry (1992). The data highlight the sensitivity of the traditional bivariate mass

<ref>models. For de</ref> published values range from 13 to 42 kg (Fig. 3), with studies for A.L. 288-1 (including predictive intervals when calculated), an ape- and human-based predictive equation. As can be seen in worthwhile endeavor on several grounds however. Recent studies

vast majority of total body volume resides within the trunk. A problem with conducting volumetric mass estimation, as the skeleton were not recovered. Most notably, the vertebral column (Brassey, 2017) may be attributed partly to the relative inertial properties. The slow adoption of volumetric mass estimation around the skeleton via scaling of human and/or chimpanzee inertial properties for the specimen (Crompton et al., 1998; Kramer, 1999; Kramer and Eck, 2000; Sellers et al., 2004; Wang et al., 2004; Nagano et al., 2005; Sellers et al., 2004; Wang et al., 2004), or a combination of the above. When deriving mass prediction equations based on hind limb dimensions, the mass estimates in Figure 3 represent the extreme upper and lower values of each publication and do not account for any author preference stated with regards to which estimate is most appropriate. McHenry (1992) favors the human-based predictive equation for example, narrowing the range to 17–37 kg. Likewise, Squyres and Ruff (2015) present results from both Type I and Type II regressions, but consider the results of the ordinary least squares (OLS) analysis inappropriate and favor reduced major axis (RMA). Yet despite three decades’ worth of debate regarding the appropriate choice of skeletal element, dimension, modern calibration dataset, and regression type, Figure 3 suggests most studies do indeed overlap in the area of 25–37 kg.

Although A.L. 288-1 has frequently been the subject of fossil hominin mass prediction studies, a volumetric reconstruction has never been attempted. Numerous dynamic analyses of locomotion in A. afarensis have required values for center of mass and segment inertial properties for the specimen (Crompton et al., 1998; Kramer, 1999; Kramer and Eck, 2000; Sellers et al., 2004; Wang et al., 2004; Nagano et al., 2005; Sellers et al., 2005). In all instances, however, body mass has been assigned a priori on the basis of previously published estimates, with the mass subsequently distributed around the skeleton via scaling of human and/or chimpanzee inertial properties. The slow adoption of volumetric mass estimation in physical anthropology compared to other paleontological disciplines (Brassey, 2017) may be attributed partly to the relative paucity of complete skeletons. Whilst A.L. 288-1 is indeed one of the most complete Pliocene hominins ever found, large portions of the skeleton were not recovered. Most notably, the vertebral column and shoulder girdle is poorly represented, with considerable portions missing. The rib cage is relatively well represented, with material available for all ribs barring ribs 2 and 12. Due to the fragmentary nature of the costal remains, a good deal of reconstruction and interpolation is required however. This is particularly problematic when conducting volumetric mass estimation, as the vast majority of total body volume resides within the trunk.

A volumetric reconstruction of A. afarensis A.L. 288-1 is a worthwhile endeavor on several grounds however. Recent studies of non-hominin fossil skeletons have found traditional bivariate mass predictions to be unfeasibly high (Brassey et al., 2013; Bates et al., 2015), but such insight may only be gained via attempting to fit volumetric shapes around the skeleton to simulate the extent of soft tissue required to achieve said mass values. Whilst the wealth of pre-existing mass estimates of A.L. 288-1 is commendable, they are heavily skewed towards hind limb and pelvis based regressions. Although this may be justifiable on mechanical grounds, it would seem prudent to also approach the problem of mass estimation from an alternative and innovative direction incorporating information from across all available skeletal material.

As a volumetric technique, convex hulling is well suited to the reconstruction of specimens characterized by incomplete thoracic material. The extent of an object’s convex hull is dictated by its geometric extremes (Fig. 1), ensuring the presence of ‘missing data’ within the bounds of the hull does not impact upon its ultimate volume. As such, absence of or damage to vertebrae or ribs lying within the bounds of the ‘trunk’ functional unit will not negatively impact resulting mass estimates. A corollary, however, is this makes it even more essential that the placement of geometric extremes (and any additional spacing to account for missing elements) is identifiable.

In this paper, we use convex hulling to estimate the body mass of the (reconstructed) A.L. 288-1 skeleton. In doing so, we also explore the effect of uncertainty in the articulation of the thorax and reconstruction of the pelvis on resulting mass estimates. In the past, the form of the A. afarensis ribcage has been debated, typically falling into a dichotomy of an ape-like ‘funnel shape’ versus human-like ‘barrel shape’ (Latimer et al., 2016 and references therein). Despite this interest, relatively little is known of the effect thoracic morphology may have upon resulting mass estimates and inertial properties. The novel application of convex hulling to the mass estimation of A. afarensis will act as an independent check on the validity of previous allometry based mass predictions and going forward will further inform discussions on the nature of australopith locomotion and sexual dimorphism that are themselves heavily reliant upon values for body mass.

Here, we choose to focus on just one hominin specimen as a case study of the convex hulling methodology. In doing so, we accompany our mass estimates with the most transparent and rigorous 3D reconstruction of A.L. 288-1 to date. We aim to equip the reader with the methodological tools necessary to expand this technique, as well as a grounding in its current benefits and limitations. Given the ongoing discovery of exceptional specimens and the rapidly declining costs of digitization, we are optimistic that this technique can be more broadly applied within the field of human evolution. Of course, this will be facilitated by a shift towards authors making underlying digital datasets freely available (Davies et al., 2017), a practice from which we all stand to benefit greatly.

2. Materials and methods

2.1. Modern calibration dataset

There is considerable debate in the literature regarding the appropriate choice of reference population when applying predictive equations to fossil hominins. Typically, calibration datasets comprise modern humans, modern human populations of small stature, African great apes (Jungers, 1990; Hens et al., 2000; Grabowski et al., 2015), or a combination of the above. When deriving mass prediction equations based on hind limb dimensions, human based models are often preferred due to a perceived similarity in limb function, i.e., potential bipedalism. This, in itself, requires an a priori assumption of the fossil taxa being bipedal, an

<table>
<thead>
<tr>
<th>Skeletal element</th>
<th>Predicted body mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Hominoida</td>
</tr>
<tr>
<td>Humeral head</td>
<td>17.4</td>
</tr>
<tr>
<td>Elbow</td>
<td>16.5</td>
</tr>
<tr>
<td>Radial head</td>
<td>12.9</td>
</tr>
<tr>
<td>Thoracic vertebra 12</td>
<td>24.1</td>
</tr>
<tr>
<td>Sacrum</td>
<td>28.5</td>
</tr>
<tr>
<td>Femoral head</td>
<td>27.9</td>
</tr>
<tr>
<td>Femoral shaft</td>
<td>35.2</td>
</tr>
<tr>
<td>Proximal tibia</td>
<td>32.2</td>
</tr>
<tr>
<td>Distal tibia</td>
<td>27.1</td>
</tr>
<tr>
<td>Talus</td>
<td>37.0</td>
</tr>
</tbody>
</table>

* Values taken from McHenry (1992) for ordinary least squares regression models. For definitions of the dimensions measured from each skeletal element, see McHenry (1992). The data highlight the sensitivity of the traditional bivariate mass estimation approach to the skeletal element upon which the predictive model is based.
issue that is particularly problematic should the derived body mass subsequently be used in biomechanical analyses of potential bipedalism. Alternatively, a training dataset comprising modern human populations of small stature might be preferred to minimize the degree of extrapolation necessary from smallest modern individual to fossil taxa. But again, this involves an assumption of fossil hominin body size (i.e., lying below that of most modern individuals) prior to the analysis (Konigsberg et al., 1998).

Given the paucity of available whole body CT data, a convex hull predictive model based solely on modern humans is currently difficult to achieve, particularly in the case of humans from small-stature populations. Here, we apply an ‘all primate’ predictive model to the estimation of A. afarensis body mass. In doing so, we make no assumptions regarding the locomotor function of the hind limbs or the range of body sizes probably occupied by A. afarensis. By applying an ‘all primate’ model, we assume there is a consistent relationship between the volume defined by the extremities of the skeleton and total body mass. As an alternative way of conceptualizing this, we assume the volume (and density) of soft tissue skeleton and total body mass. As an alternative way of conceptualizing this, we assume the volume (and density) of soft tissue distributed outside the bounds of the convex hull to scale to body mass in a predictable manner across all primates, including fossil hominins. As such, the convex hull is conceptually closer to a ‘morphometric’ rather than ‘mechanical’ technique as defined by Auerbach and Ruff (2004).

2.1.1. Computed tomography The extant dataset comprises 15 species of modern primate (Table 2), several of which were included in an initial convex hulling study on extant mammals (Brasley and Sellers, 2014). CT scans of whole carcasses were sourced from the Kyoto University Primate Research Institute (KUPRI, http://dmm3pri.kyoto-u.ac.jp) and the male human from Kyoto University Primate Research Institute, NMS (NMS) and were CT scanned at the University of Liverpool using a Toshiba Aquilion PRIME helical veterinary scanner. Slice thickness ranged between 0.5 and 2.7 mm with pixel spacing of 0.29–0.98 mm/pixel, depending on the total size of the animal.

CT scans were imported in OsiriX (Rosset et al., 2004) and surfaces of whole articulated skeletons thresholded out on the basis of grayscale values (Fig. 2) and exported as OBJ files. In some instances, cadavers have been subject to postmortem investigations, including the detachment of portions of the cranial vault or sternum. In those cases, the 3D model of the skeleton was digitally repaired and the removed elements realigned and rearticulated in 3ds Max (www.autodesk.com). Skeletal models were subsequently imported into Geomagic Studio (3D Systems, USA) and segmented into functional units (such as head, neck, thigh, trunk; Fig. 2). When present, tails were further subdivided to ensure tight fitting hulls. Individual body segments were saved as OBJ files and convex hulls fitted around the segments using the ‘convhulln’ function of MATLAB (Mathworks, USA), which implements the qhull algorithm to find the convex hull and return its enclosed volume in minimal computer time (Barber et al., 1996).

2.1.2. Statistical analysis Total convex hull volume (m³) for each skeleton was calculated as the sum of individual segment volumes. Total convex hull volume was then regressed against known body mass (kg) following log₁₀ transformation in R (R Core Team, 2017). In two instances, associated body masses were not available (Pan troglodytes, Hylobates lar) and were therefore estimated using a pre-existing bivariate equation based upon radial head surface area in extant hominoids (Ruff, 2003). The effect of including these individuals in the regression analysis is discussed further in the results section. Additionally, several individuals sourced from NMS had, upon inspection of the CT data, been subject to some degree of postmortem surgery in the region of the abdomen, which may have resulted in removal of gut contents and certainly fluid loss. Given that the exact nature of these procedures is unknown, it is not possible to accurately correct cadaveric body mass for these losses. Rather, the regression analyses were rerun excluding these individuals, and the impact on the predictive model is discussed further below.

Ordinary least squares (OLS) was preferred in this instance, as Type-I regressions are recommended when used in a predictive capacity (Smith, 2009), however, results using reduced major axis (RMA) are also included for reference. In addition, a phylogenetic generalized least squares (PGLS) regression was applied to account for the evolutionary non-independence of data points. A consensus phylogeny of primates was downloaded from the 10kTrees website (Arnold et al., 2010) and PGLS analyses conducted in MATLAB using the `Regressionv2.m` program (Lavin et al., 2008). Raw CT scans of NMS sourced primates have been made available by the authors on figshare (http://dx.doi.org/10.6084/m9.figshare.c.3462618), whilst KUPRI-sourced scans can be accessed online via the Digital Morphology Museum (http://dmm3.pri.kyoto-u.ac.jp) and access to the human dataset can be requested from the Visible Human Project (www.nlm.nih.gov/research/visible).

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Source</th>
<th>Body mass (kg)</th>
<th>qhull Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>Human</td>
<td>NLM</td>
<td>68.9</td>
<td>4.91 × 10⁻²</td>
</tr>
<tr>
<td>Pongo pygmaeus</td>
<td>Orangutan</td>
<td>–</td>
<td>45.0</td>
<td>3.25 × 10⁻²</td>
</tr>
<tr>
<td>Pan troglodytes</td>
<td>Chimpanzee</td>
<td>–</td>
<td>50.9b</td>
<td>4.18 × 10⁻²</td>
</tr>
<tr>
<td>Gorilla gorilla</td>
<td>Gorilla</td>
<td>KUPRI</td>
<td>176.0</td>
<td>9.57 × 10⁻²</td>
</tr>
<tr>
<td>Hylobates lar</td>
<td>Lar gibbon</td>
<td>KUPRI</td>
<td>6.65³</td>
<td>6.60 × 10⁻³</td>
</tr>
<tr>
<td>Hylobates agilis</td>
<td>Agile gibbon</td>
<td>KUPRI</td>
<td>6.75</td>
<td>5.40 × 10⁻³</td>
</tr>
<tr>
<td>Saimiri sciureus</td>
<td>Squirrel monkey</td>
<td>KUPRI</td>
<td>0.759</td>
<td>6.00 × 10⁻⁴</td>
</tr>
<tr>
<td>Macaca fascata</td>
<td>Japanese macaque</td>
<td>KUPRI</td>
<td>6.60</td>
<td>5.10 × 10⁻³</td>
</tr>
<tr>
<td>Chlorocebus aethiops</td>
<td>Greivet monkey</td>
<td>KUPRI</td>
<td>3.78</td>
<td>3.70 × 10⁻³</td>
</tr>
<tr>
<td>Hylobates pileatus</td>
<td>Pileated gibbon</td>
<td>NMS</td>
<td>7.40</td>
<td>4.95 × 10⁻³</td>
</tr>
<tr>
<td>Aotus nancymae</td>
<td>Black howler monkey</td>
<td>NMS</td>
<td>5.40</td>
<td>3.31 × 10⁻³</td>
</tr>
<tr>
<td>Trachypithecus cristatus</td>
<td>Silvery langur</td>
<td>NMS</td>
<td>7.50</td>
<td>3.83 × 10⁻³</td>
</tr>
<tr>
<td>Cebus apella</td>
<td>Brown capuchin</td>
<td>–</td>
<td>1.56</td>
<td>1.15 × 10⁻³</td>
</tr>
<tr>
<td>Leontopithecus rosalia</td>
<td>Golden lion tamarin</td>
<td>NMS</td>
<td>0.425</td>
<td>3.18 × 10⁻⁴</td>
</tr>
<tr>
<td>Papio anubis</td>
<td>Olive baboon</td>
<td>–</td>
<td>15.0</td>
<td>1.23 × 10⁻²</td>
</tr>
</tbody>
</table>

a NLM — National Library of Medicine, KUPRI — Kyoto University Primate Research Institute, NMS — National Museum of Scotland.

b Body mass estimated on the basis of radial surface area derived from CT scans, using a previously published predictive equation deriving from extant Hominoids (Ruff, 2003). Note that 11 of the 15 individuals included have body masses of less than 15 kg, and thus fall considerably below the likely body mass of A.L. 288-1.
In addition to the primate carcasses included in the original regression model, supplementary modern specimens of known body mass were subjected to the predictive model in order to test its performance. Six primate scans were sourced from KUPRI, and an additional six CT scans of human males were taken from the National Cancer Imaging Archive (NCIA; Clark et al., 2013; www.cancerimagingarchive.net). The additional CT scans of human males were publicly available. All modern human data referred to here are clinical CT scans from the NCIA, specifically females from the Cetumixab drug trial and Pan troglodytes CT scans from the Arizona primate foundation’s skeletal collection (digitized and curated at http://www.carta-anthropogeny.org), with full details of the specimens employed provided in SOM Table S1.

2.2. Application to fossil material

casts of the A. afarensis partial skeleton A.L. 288–1 were surface scanned using an LMI HDiR3 Advance structured light scanner (LMI technologies, Delta, BC) at a resolution of approximately 50 μm. At the time of initial analysis, no μCT data or associated models were publicly available. Subsequently, models of the humerus, scapula fragment, proximal tibia, and distal femur have been made available from http://www.elucy.org. A deviation analysis of our casts against models based upon said μCT data has shown minimal difference between reconstructions (see Supplementary Online Material [SOM] Fig. S1). As such, it was decided to proceed with a model composed predominantly of casts, with the exception of those elements made publicly available by Kappelman et al. (2016) at elucy.org. All ‘sculpts’ were constructed from modelling clay by ATC, incorporating the cast of the well-sculpted constructed by ATC, incorporating the cast of the well-

Figure 4. Pelvis reconstruction. Left top,) Cranial view, Right top_ medial view, Left bottom,) posterior view, Right bottom,) anterior view.

2.2.1. Pelvic region

The sacrum is crushed, particularly on the left side, and the model was therefore virtually cut in half and the right side mirrored following the protocol outlined in Zollikofer and Ponce de León (2005) and Gunz et al. (2009). In doing so, much of the original distortion was removed, resulting in a marginally wider sacrum than previous reconstructions of Tague and Lovejoy (1986) and Schmid (1983). The complete left os coxa is crushed in the region of the sacroiliac joint and distorted in the ischiopubic region (Johanson et al., 1982a, b). The scanned model was virtually cut into its constituent parts and rearticulated with a concentration on the internal arc being consistent. The complete left os coxa was then articulated to the sacrum with a midline projected from the sacrum, as well as two lines either side at 6 mm apart to model the length of the ligament for the pubic symphysis. This distance is based on measurements of a small mixed sample of Homo sapiens (n = 8) and Pan troglodytes (n = 6) medical scans of the pelvic area, where average distance between pubic symphyses was 5.7 mm with a standard deviation of ~1 mm. Given that there is definitely crushing of the sacroiliac joint in A.L. 288–1 (Johanson et al., 1982a, b; Williams and Russo, 2016), the alignment allows for the eventual restoration of the true joint, as there is also space between our reconstructed sacrum and the pubic symphysis. The resulting articulation of the right os coxa was then mirror-imaged using the midline plane of the sacrum as the reflection plane. The complete pelvis and associated linear metrics can be found in Figure 4, and Tables 3 and 4. A complete 3D model suitable for rapid prototyping is available as SOM on Figshare (http://dx.doi.org/10.6084/m9.figshare.c.3462618), alongside a figure illustrating the reconstruction stages.

2.2.2. Lower limb

The left femur is mostly complete, although the distal epiphysis of the original cast was misaligned. The distal epiphysis was therefore virtually rearticulated, along with the proximal fragment that includes the femoral neck and most of the head, to complete the element, ensuring that the dimensions of our scans matched those of the original fossil (Johansen et al., 1982a). The length of the incomplete left tibia was estimated using the tibial:humeral ratio of the Woranso-Mille specimen (Haile-Selassie et al., 2010a, b; Haile-Selassie and Su, 2016) as a reference, whilst the missing diaphyseal material was not reconstructed, as this has no bearing upon the convex hull volume. The fibula was reconstructed by scanning a physical sculpt constructed by ATC, incorporating the cast of the well-preserved distal portion of the fibula (A.L. 288-1at), proportioned to match our estimated tibial length and articulating anatomically with the tibia proximally and the talus distally. In the foot, the A.L. 288–1 talus was used to scale a scan of a reconstruction of the OH 8 right foot in which missing components (principally the phalanges) were sculpted by ATC to the proportions of a modern
length and longitudinal curvature. We reconstructed the missing midshaft are missing, necessitating estimation of maximum spline morph of the modern human reference sample (SOM 2.2.3. Upper limb The right scapula preserves the glenoid in its human foot. The lengths of all reconstructed limb bones are reconstructed. The missing morphology was reconstructed through a thin plate surface of the radius in A.L. 288-1, together with the metacarpal/ulna length ratio and the metacarpal/phalangeal length ratios in other A. afarensis material (Bush et al., 1982; Alba et al., 2003; Drapeau et al., 2005), place some constraints on the size and shape of the hand in A.L. 288-1. A human hand obtained from the NCIA sample was scaled to fit the A.L. 288-1w capitate and our estimates of second and third metacarpal lengths.

2.2.4. Vertebral column The specimens A.L. 288-1ae, A.L. 288-1af, A.L. 288-1ad, A.L. 288-1ac, and A.L. 288-1aa were originally interpreted as the bodies of a probable T6, a probable T8, and T10, T11, and L3 vertebrae, respectively (Johanson et al., 1982a, b). However, a recent revision by Meyer et al. (2015) interpreted these vertebrae as T6, T7, T9, T10, and L3, and we follow this numbering here. The number of lumbar vertebrae originally present in A.L. 288-1 has also been debated. Cook et al. (1983) suggested A.L. 288-1 had five lumbar vertebrae, yet Latimer and Ward (1993) observed six lumbar vertebrae in available skeletons of A. africanus (see also Robinson, 1972; Sanders, 1998) and argued this number is therefore likely to represent the primitive condition in hominins. They suggest the T13 of hominoids underwent transformation into L1 in hominins as a means of facilitating lumbar lordosis, resulting in Pliocene hominins possessing 12 thoracic and six lumbar vertebrae, and a subsequent reduction to the five lumbar vertebrae typical of Pleistocene and Holocene humans. Subsequent research (Williams et al., 2015, 2016) has argued that this is not correct and that australopiths had five lumbar vertebrae. We concur with this argument and in our reconstruction, A.L. 288-1 has five lumbar vertebrae.

Table 5

<table>
<thead>
<tr>
<th>Element</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulna</td>
<td>223</td>
</tr>
<tr>
<td>Radius</td>
<td>203</td>
</tr>
<tr>
<td>Tibia</td>
<td>247</td>
</tr>
<tr>
<td>Fibula</td>
<td>225</td>
</tr>
<tr>
<td>Femur</td>
<td>280</td>
</tr>
<tr>
<td>Clavicle</td>
<td>104</td>
</tr>
<tr>
<td>Humerus</td>
<td>237</td>
</tr>
</tbody>
</table>

All linear measurements are in mm.

* All elements are from the right side apart from the femur, which has been mirrored. Measurements are from reconstructed scans (femur, tibia) and 3D prints of reconstructions (all others).
Table 6
Posterior vertical heights (in mm) of vertebral bodies in
[...]

Andaman(1)
Body height 10.21 10.23 10.64 10.78 11.91 14.05 15.10 15.29 15.24 16.02 16.28 17.44 17.49 17.96 19.32 21.05 22.35 22.25 23.67 23.76 23.16 21.32
Body height SD 4.27 2.79 2.04 1.89 2.16 2.02 2.07 1.95 1.75 2.24 2.19 2.10 2.04 2.14 2.01 2.44 2.68 2.95 3.10 3.31 3.17

Pan troglodytes
Body height 33.75
Body height SD 2.65

2.2.5. Thorax The subject of the shape of the Australopithecus thorax has been one of considerable debate (Schmid, 1983; Lewin and Foley, 2004; Haile-Selassie et al., 2010a, b; Schmid et al., 2013; Latimer et al., 2016). Both a human ‘barrel shape’ and hominoid ‘funnel shape’ ribcage have been proposed for A. afarensis, with previous reconstructions being based on very limited fragmentary remains. However, the recent find and subsequent analysis of the Woranso-Mille thoracic remains have supported the A. afarensis thorax as being a different form to either of these extremes, with a ‘bell shaped’ thorax being favored (Latimer et al., 2016). As such, we reconstruct the A.L. 288-1 ribcage using an iterative, geometric morphometric technique based upon a sample of both H. sapiens and P. troglodytes.

The rib fragments of A.L. 288-1 were positioned using a reference thorax of a modern human scaled to the height obtained above, purely as a guide for the initial reconstruction. Where appropriate, fossil rib fragments were mirrored to create a starting model based solely on A.L. 288-1 material. The right hand side was preferred as this is generally the better preserved side. Medical CT scans of 10 modern human females were subsequently sourced from the NCIA and 10 P. troglodytes from the Arizona Primate Foundation collection (Available from http://www.carta.anthropogeny.org; SOM Table S1). 3D models of the ribcage (or individual ribs in the case of Pan) were extracted using the freeware program Stradwin (Treece et al., 1999). For each rib of the modern ribcage dataset, four sets of 61 semilandmarks were placed on the anterior, posterior, cranial, and caudal extremities of the rib head (with up to four fixed landmarks to mark the position of the vertebral body height A.L. 288-1)

H. sapiens (a medieval sample and Andaman Islanders), P. troglodytes, and archaic hominins prior to around 1.5 Ma. It can be seen that the ratios of the heights of the surviving thoracic and lumbar vertebrae in A.L. 288-1 are very similar to modern humans, particularly our smaller bodied Andaman sample, but are less similar to P. troglodytes. It is also very similar to that of STS-14.

Several values for total dry height of the A.L. 288-1 vertebral column (L5-C2) are presented, depending upon the modern reference sample used (Table 7). We prefer the value based mainly on Andaman Islanders for the above reason and, as the maximum length, will reflect an upper limit for total body size. The dry column height for our reconstruction is 339.8 mm, without accounting for intervertebral disc heights. Further adjustment to account for disc spacing based upon Gilad and Nissan (1986) and Kunkel et al. (2011) result in a ‘wet’ height of 422.3 mm. The vertebral column from Cetumixab0522ct0433 was manually segmented in Avizo, and the resulting PLY file was scaled to match this height and to the width of the L3 from A.L. 288-1.

Table 7
Reconstructed spine heights using proportions from modern comparative samples. a

<table>
<thead>
<tr>
<th>Sample</th>
<th>Predicted vertebral column height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS14 and Homo sapiens (dry)</td>
<td>340.5</td>
</tr>
<tr>
<td>STS14 and Pan troglodytes (dry)</td>
<td>369.1</td>
</tr>
<tr>
<td>A.L. 288-1 and Pan troglodytes (dry)</td>
<td>346.0</td>
</tr>
<tr>
<td>Homo sapiens (Blackgate) (dry)</td>
<td>330.0</td>
</tr>
<tr>
<td>Homo sapiens (Blackgate) (wet)</td>
<td>415.4</td>
</tr>
<tr>
<td>Homo sapiens (Andaman) (dry)</td>
<td>339.8</td>
</tr>
<tr>
<td>Homo sapiens (Andaman) (wet)</td>
<td>422.3</td>
</tr>
</tbody>
</table>

a For estimation of intervertebral disc heights, the values given in Gilad and Nissan (1986) and Kunkel et al. (2011) were scaled to the resulting predicted heights of each vertebra, excepting the surviving vertebrae, where the original values were substituted. The equation used for dry “height” = (\(\frac{\text{vertical column height A.L. 288-1}}{100} \times \text{contribution of vertebra to column height} \)) × 100. height = \(\frac{\text{vertebral body height A.L. 288-1}}{100} \times \text{contribution of vertebra to column height} \).
tubercle and up to four at the head). The semilandmarks were then resampled equidistantly using the R package Morpho (Schlager, 2013). Sixty-one semilandmarks were chosen, rather than 15 as employed by Garcia Martinez et al. (2014) in the Kebara reconstruction, as A.L. 288-1’s ribs are much more fragmentary. A greater number of landmarks therefore allows for more of the original fossil data to influence the resulting reconstruction. Semilandmarks missing from each of the A.L. 288-1 ribs were then reconstructed using thin plate splines based upon the entire modern hominin (i.e., both *H. sapiens* and *P. troglodytes*) reference dataset in the R package Morpho. Final reconstructed polygon models were created by morphing a chimpanzee rib onto the configuration of predicted landmarks for A.L. 288-1 using the ‘warpremesh’ function in Geomorph (version 3.0.3; Adams and Otarola-Castillo, 2013). Each rib reconstruction was also 3D printed to check its feasibility. The simplified rib heads presented here act only to articulate with the reference spine, and with the exceptions of ribs 7 and 11, have limited biological significance beyond a prediction of overall size. The resulting 3D models were subsequently rearticulated onto the base spine skeletal model. The complete right hand side of the rib cage was mirror-imaged to give the left portion. All landmark data are available as SOM on Figshare (http://dx.doi.org/10.6084/m9.figshare.c.3462618).

Given the fragmentary state of the thorax, ribs 2 and 12 were not included as they are entirely absent from the original. Rib 11 was also not reconstructed in its entirety, as it is extremely rare to the rib in length both within and between species (T.O.M., pers obs.), and its curvature does not affect the reconstructed convex hull. As previously stated, a benefit of convex hulling is that the hulls effectively ‘snap-to’ the outermost points of the region and are therefore insensitive to any missing material within the bounds of the extremities. Furthermore, our attempt to morph a ribcage on the basis of limited thoracic material represents an improvement over previous paleontological reconstructions in which an articulated modern ribcage is simply scaled and substituted into the fossil (Basu et al., 2016). Finally, a modern human sternum from the NCIA sample was scaled to approximately 60% in all directions and articulated with the thorax.

2.2.6. Cranium

For the cranium, a scan of the composite *A. afarensis* A.L. 333 reconstruction (available on http://www.morphosource.org) was scaled to fit the existing mandible and cranial vault fragments of A.L. 288-1.

The reconstruction of the thorax and final articulated model are illustrated in Figure 5. The overall height of A.L. 288-1 is reconstructed as 1106 mm, and bi-iliac breadth is 264 mm. The whole model accompanies the publication as SOM on Figshare (http://dx.doi.org/10.6084/m9.figshare.c.3462618) with the exception of the proximal tibia, reconstructed humerus, and distal femur, which can be obtained from http://www.elucy.org, and the clavicle, which can be obtained from http://www.morphosource.org. All landmark datasets used in the model construction are also available, as well as landmarks indicating placement of model files available from elsewhere (SOM Figure S2a, b).

2.2.7. Sensitivity analysis

In volumetric reconstructions, the majority of total volume lies within the trunk. As such, convex hull mass estimates are particularly sensitive to uncertainty in the articulation of this region. As stated above, the height of the model presented here is in broad agreement with previous reconstructions, and we can be relatively confident in the dimensions of the trunk in the superior-inferior direction. However, to quantify the effect of uncertainty in the remaining two dimensions, two additional models were created in which the entire trunk segment (pelvis, ribs, vertebrata, scapula, sternum, and clavicle) were scaled in the dorsoventral and mediolateral directions by 10% and 20%, respectively.

3. Results

3.1. Predictive model

The results of the regression analyses can be seen in Table 8 and Figure 6A. The OLS fit is characterized by a high correlation coefficient ($r^2 = 0.988$) and a %SEE of 20%, whilst the type-II RMA regression has a %SEE of 14%. When phylogenetic independence was taken into account by conducting PGLS, %SEE increased to 26%. Ordinary least squares is typically the preferred regression type when used in a predictive capacity (Smith, 1994, 2009) and is therefore reported throughout. Application of RMA results in very similar predictions (within ~2%) to those generated using OLS.

In two instances, associated body mass was not available for the modern primate cadaver and values were therefore assigned using a pre-existing bivariate equation based upon radial head surface area in extant Hominoids (Ruff, 2003). As such, these values are estimates themselves with associated errors. Regression analyses were therefore rerun excluding these individuals and the results presented in SOM Table S2. Exclusion of these individuals had a negligible effect on the predictive equation, however, and resulting mass estimates deviated by ~5% from the original equation. Likewise, some individuals sourced from the National Museum of Scotland had been subject to postmortems and removal of an unqualifiable mass of gut content. Removal of these individuals also had a very minor impact on the predictive equation (SOM Table S3) and decreased fossil mass estimates by ~2% relative to the original equation.

3.2. Application to modern individuals of known body mass

Overall, the original OLS predictive model performed well when applied to modern primate specimens of known body mass. The model performed best when predicting the mass of a male human of normal BMI (21.4), reliably estimating body mass to within 800 g (Table 9). For the night monkey and squirrel monkeys, percentage error on the mass estimates were within the bounds of what would be expected on the basis of a mean absolute prediction error of 13.5% calculated for the OLS predictive equation. However, in the case of the Japanese macaques, prediction error was high (27–29%, Table 9). The “leave-one-out” jackknife analysis resulted in an average prediction error of 14.8%, ranging from 0.5 to 37.4%.

The predictive equation performed as expected when applied to a sample of human males with varying body mass index (BMI, Fig. 7). Individuals with a BMI falling within the ‘healthy’ range (18.5–25) had percentage prediction errors between 1 and 15%, in line with the jackknife analysis above. In individuals characterized as overweight (BMI 25–30) or obese (BMI >30), predicted mass increasingly deviated from known mass, resulting in a prediction error of 32% in one particularly obese individual.

3.3. Application to A.L. 288-1

Total height of the A.L. 288-1 reconstruction presented here is 1106 mm, which is slightly taller than the widely accepted estimate of 1070 mm by Jungers (1988a). Likewise, reconstructed bi-iliac breadth is 264 mm, which is at the upper end of the range of published estimates of 228–268 mm (Berge and Goulard, 2010; Ruff, 2010). In contrast, bi-iliac breadth of the 10% and 20% expanded models is 290 mm and 317 mm, respectively, which are well above previously published estimates.

Fitting convex hulls around the body segments of our 3D reconstruction of *A. afarensis* (288–1) resulted in a total convex hull volume of 0.0148 m³ (Fig. 8, Table 10). Increasing the dorsoventral and
mediolateral dimensions of the trunk segment by 10% and 20% produced total convex hull volumes of 0.0170 m3 and 0.0195 m3, respectively. When convex hull volume was substituted into the OLS predictive equation (Table 8), the body mass of *A. afarensis* was estimated as 20.4 kg (95% prediction interval: 13.5 e 30.9 kg). Models expanded by 10% and 20% in the trunk region resulted in mass estimates of 23.5 kg (95% predictive interval: 15.5 e 35.8 kg) and 27.0 kg (95% prediction interval: 17.7 e 41.0 kg), respectively. Segment inertial properties are not estimated in the present study, but will be incorporated into future multibody dynamic analyses of locomotion.

4. Discussion

The volumetric model of *A. afarensis* (A.L. 288–1) presented here results in an average body mass estimate of 20.4 kg. This figure is...
lower than several mass estimates published elsewhere for this specimen (Fig. 3), although the sizeable 95% prediction intervals overlap many previous studies and suggest a mass up to 31 kg is statistically supported. When compared with previous studies, the lower average mass estimate calculated here may be consistent with three alternative explanations: (1) that the convex hull predictive model does not work when applied to *A. afarensis*, (2) that the articulated model of A.L. 288-1 is incorrect, or (3) that the body mass of A.L. 288-1 may have been lower than previously estimated, which are discussed in turn below.

4.1. The convex hull predictive model does not work when applied to *A. afarensis*

Here we have shown that the convex hull mass prediction model performs reasonably well when applied to several modern primate individuals (Table 9), including humans, squirrel monkeys, and a species of night monkey not included in the original training dataset. The convex hulling technique defines a predictable relationship between the overall volume of the skeleton and the amount of soft tissue held beyond its bounds. For convex hulling to underestimate mass therefore, A.L. 288-1 would be required to

Table 9

Modern primate specimens used to test the accuracy of the convex hull (qhull) predictive equation.

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Source</th>
<th>Accession number</th>
<th>Sex</th>
<th>BMI</th>
<th>Body mass (kg)</th>
<th>qHull volume (m³)</th>
<th>qHull mass (kg)</th>
<th>% difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aotus trivirgatus</td>
<td>Three striped night monkey</td>
<td>KUPRI 1322</td>
<td>M</td>
<td>1.03</td>
<td>8.31</td>
<td>1.06 × 10⁻⁴</td>
<td>2.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saimiri sciureus</td>
<td>Squirrel monkey</td>
<td>KUPRI 287</td>
<td>M</td>
<td>0.62</td>
<td>4.32</td>
<td>0.54 × 10⁻⁴</td>
<td>13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saimiri sciureus</td>
<td>Squirrel monkey</td>
<td>KUPRI 283</td>
<td>M</td>
<td>0.71</td>
<td>6.37</td>
<td>0.81 × 10⁻⁴</td>
<td>13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saimiri sciureus</td>
<td>Squirrel monkey</td>
<td>KUPRI 280</td>
<td>M</td>
<td>0.86</td>
<td>6.51</td>
<td>0.83 × 10⁻⁴</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macaca fascata</td>
<td>Japanese macaque</td>
<td>KUPRI 897</td>
<td>F</td>
<td>4.50</td>
<td>2.57</td>
<td>3.36 × 10⁻³</td>
<td>29.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macaca fascata</td>
<td>Japanese macaque</td>
<td>KUPRI 369</td>
<td>F</td>
<td>10.2</td>
<td>5.86</td>
<td>7.77 × 10⁻³</td>
<td>27.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>Human</td>
<td>TCIA</td>
<td>NaF-PROSTATE-01-0005</td>
<td>M</td>
<td>21.4</td>
<td>68.7</td>
<td>4.93 × 10⁻²</td>
<td>69.5</td>
<td>1.14</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>Human</td>
<td>TCIA</td>
<td>NaF-PROSTATE-01-0007</td>
<td>M</td>
<td>24.0</td>
<td>82.2</td>
<td>5.20 × 10⁻²</td>
<td>73.4</td>
<td>10.7</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>Human</td>
<td>TCIA</td>
<td>NaF-PROSTATE-01-0009</td>
<td>M</td>
<td>24.4</td>
<td>90.1</td>
<td>5.40 × 10⁻²</td>
<td>78.8</td>
<td>14.8</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>Human</td>
<td>TCIA</td>
<td>NaF-PROSTATE-01-0003</td>
<td>M</td>
<td>26.9</td>
<td>82.5</td>
<td>4.57 × 10⁻²</td>
<td>64.4</td>
<td>21.9</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>Human</td>
<td>TCIA</td>
<td>NaF-PROSTATE-01-0002</td>
<td>M</td>
<td>29.2</td>
<td>91.5</td>
<td>4.72 × 10⁻²</td>
<td>66.6</td>
<td>27.2</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>Human</td>
<td>TCIA</td>
<td>NaF-PROSTATE-01-0006</td>
<td>M</td>
<td>31.7</td>
<td>88.5</td>
<td>4.28 × 10⁻²</td>
<td>60.2</td>
<td>32.0</td>
</tr>
</tbody>
</table>

* In one instance, the predictive model overestimated live body mass, whilst in three instances the model underestimated live model mass.

TCIA — The Cancer Imaging Archive; BMI — body mass index, calculated as mass (kg)/height (m)²; M — male; F — female.
have held far more soft tissue outside the extent of the convex hull than would characterize a modern primate of similar size.

Many of the modern primate carcasses digitized for the present study were captive individuals rather than wild-caught specimens. The results of Leigh (1994) for anthropoid primates suggest captive body weight is on average 27% higher than non-captive weight. However, captive African apes were not found to be significantly heavier than wild individuals. As these species (alongside humans) are the most relevant taxa for assessing A.L. 288-1, this suggests the use of zoo individuals might not be a factor in the low predicted masses of A.L. 288-1. In contrast, Leigh (1994) also found macaques to be particularly susceptible to obesity, with captive body mass on average 58% above species averages for wild mass. This may go some way to explaining the poor performance of our predictive equation, considerably underestimating the body mass of the captive specimens of *Macaca fuscata* (Table 9). This issue is also highlighted in Figure 7, in which the predictive performance of the convex hull equation is related to the BMI of male humans, with percentage error increasing as a function of BMI. This is unsurprising given the nature of the convex hulling approach, as one assumes a consistent 'primate-average' amount of soft tissue to be distributed outside the bounds of the skeleton and does not account for extreme volumes of adipose tissue. Whilst it is reassuring that humans with a 'normal' BMI fall within the range of predictive error expected of the equation, these data are illuminating with regards to the sensitivity of the approach to assumed body composition. Although perhaps less of a problem for primates, this would be an issue for taxa known to undergo considerable seasonal shifts in body composition, such as migratory species.

As a 'wild' individual, there is little reason to believe A.L. 288-1 carried unusually large stores of fat above and beyond modern captive primates. Likewise, there is no evidence for *A. afarensis*
The articulated model of A.L. 288-1 is incorrect

This is almost certainly the case to some extent. Less than half of the skeleton is preserved, and what remains has been subject to taphonomic deformation. A substantial amount of ‘sculpting’ has been necessary in order to create an articulated model upon which convex hulling can operate. Whilst considerable effort has been made to ensure the reconstruction of damaged/missing elements incorporates the maximum amount of information from existing fragments and is grounded within the context of other closely related taxa, including modern humans, some error is inevitable. Furthermore, due to the volumetric nature of the mass estimate, any errors associated with reconstructing the linear dimensions of missing/damaged skeletal elements become proportionally larger when incorporated into the final volumetric model. Unfortunately, as with any palaeontological reconstruction, the degree to which this model accurately reflects the body shape of A.L. 288-1 will never be known, though the reconstruction may be corroborated through further finds of fossil skeletons. The more pertinent question then becomes the sensitivity of the convex hulling approach to potential inaccuracies.

Here the ‘trunk’ segment comprises 71% of total convex hull volume of A.L. 288-1, and errors in this region of the body can impact significantly on final body mass estimates. Not only does the ‘trunk’ consist of many skeletal elements of uncertain articulation (including the pelvis, ribs, and scapulae), the morphology of those elements is frequently contested in the literature (e.g., Aiello and Dean, 1999). In addition, the trunk region is also one of the poorest in terms of fossil preservation, with ribs being particularly fragile and subject to loss. For this reason, we focused on sensitivity analysis on the effect of overall trunk shape on resulting mass estimates.

A height of 1106 mm for A.L. 288-1 agrees with previous estimates of stature (Jungers, 1988a), and the bi-iliac breadth of our ‘best-guess’ reconstruction overlaps with those published elsewhere (Berge and Goularas, 2010; Ruf, 2010), with both erring on the upper end of previous studies. Yet combined they result in a convex hull mass estimate falling below the majority of other studies (Fig. 3) at 20.4 kg. In contrast, to achieve a mean body mass estimate in excess of 25 kg that is more convergent with previous studies requires the trunk region to be expanded by ~20%, resulting in a bi-iliac breadth of 317 mm, far above the range of values previously considered feasible. In addition, the overall body shape necessary to achieve such high values of body mass appears disproportionally broad in the shoulder and thoracic region (Fig. 9). Alternative metrics for quantifying ‘external body size’ including ‘stature’ (Porter, 1995) or ‘stature × body breadth’ (Ruff, 1994, 2002) have previously been assessed to estimate body mass. Such studies have been criticized, however, for involving an additional stage of prediction (estimating stature from preserved long bone lengths and subsequently estimating body mass from stature) and for requiring a considerable portion of the skeleton to be recovered. We must therefore recognize that the convex hulling technique presented here is even more limited in this sense, requiring an entire 3D articulated skeleton to operate on and a non-trivial degree of digital restoration to achieve the model. However, the application of sensitivity analyses in the form conducted above does permit a visual check on body size reconstructions, allowing for the results of linear predictive models (X species weighed Y kg) to be placed into the context of what this means for the body shape of the taxa in question. In this instance, we consider the 20% expanded trunk model to be implausible in the context of hominin body shape, as it would imply that all of the thoracic remains from A.L. 288-1 are taphonomically distorted and result in an even smaller rib cage than in life. This is not particularly feasible given the evidence from KSD-VP-1/1, which suggests a thorax morphology more like the condition found in modern humans. This, however, assumes that the scaling has no effect on thoracic form, and this is an area in which more research needs to be done, for example, through analysis of small bodied modern human populations such as the Andaman Islanders or Khoi-San.

4.3. The body mass of A.L. 288-1 may have been lower than previously estimated

As far as we are aware, this is the first attempt to estimate the body mass of a fossil hominin using a 3D volumetric technique. That the results presented here for the mass of A. afarensis differ quite markedly from those published previously is perhaps unsurprising. Within the wider discipline of palaeontology, volumetric reconstructions of fossil birds (Brasse et al., 2013, 2016) and dinosaurs (Henderson, 2006; Sellers et al., 2012) have produced mass estimates lower than traditionally put forward using straightforward linear skeletal dimensions. Interestingly, the study of Porter (1995) perhaps comes closest to ours in terms of methodology, in which the BMI of A.L. 288-1 was predicted and body mass back-calculated by substituting in a stature of 1050 mm. Porter (1995) estimated a probable mass of 25 kg and suggested that the values of 28 kg and greater, favored elsewhere, were improbable without the specimen having an extremely high BMI.

Table 10

<table>
<thead>
<tr>
<th>Body segment</th>
<th>qhull Volume (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>0.001175</td>
</tr>
<tr>
<td>Neck</td>
<td>0.000140</td>
</tr>
<tr>
<td>Trunk</td>
<td>0.0010573</td>
</tr>
<tr>
<td>+10% trunk</td>
<td>0.012794</td>
</tr>
<tr>
<td>+20% trunk</td>
<td>0.015225</td>
</tr>
<tr>
<td>Upper arm</td>
<td>0.000179</td>
</tr>
<tr>
<td>Lower arm</td>
<td>0.000117</td>
</tr>
<tr>
<td>Hand</td>
<td>0.000233</td>
</tr>
<tr>
<td>Thigh</td>
<td>0.000530</td>
</tr>
<tr>
<td>Shank</td>
<td>0.000299</td>
</tr>
<tr>
<td>Foot</td>
<td>0.000111</td>
</tr>
<tr>
<td>Total volume including trunk</td>
<td>0.014826</td>
</tr>
<tr>
<td>Total volume including +10% trunk</td>
<td>0.017047</td>
</tr>
<tr>
<td>Total volume including +20% trunk</td>
<td>0.019478</td>
</tr>
</tbody>
</table>

* Values for limb segments refer to one side of the body only.
Most existing mass estimates of A.L. 288-1 rely upon limb material and produce estimates typically spanning 25–37 kg (Fig. 3). If the low estimates for body mass calculated here are reliable, this would suggest the limb bones of *A. afarensis* were comparatively overbuilt relative to modern humans and apes. Recent evidence has suggested that A.L. 288-1 had relatively more robust limb bone diaphyses compared to articular size (Ruff et al., 2016). Yet the extent to which this translates into the specimen possessing a robust appendicular skeleton relative to total body size can only be understood in the light of non-limb based reconstructions as presented here. Future research may incorporate the results of volumetric mass estimates into further biomechanical analyses of skeletal loading to determine the relative robustness of the skeleton during locomotion.

5. Conclusions

The method presented here suggests that based on a complete reconstruction of the skeleton, we should expect the body mass of A.L. 288-1 to be 20.4 kg. This is considerably lower than predicted by most published sources although still within the previously published range. This reduction is very much in line with the reductions in body mass estimates seen in other paleontological studies when volumetric approaches are used and may well reflect the fact that A.L. 288-1 is a considerably lighter hominin than has previously been thought. However, it must be remembered that volumetric body masses are particularly sensitive to the reconstruction of the trunk, and the incomplete nature of the preserved ribcage may be the source of this discrepancy in mass estimates. Even so, we would suggest that the heaviest of the previous estimates would require a degree of thorax expansions that would seem unlikely. Of course, this can only be tested when more complete fossils are available.

Whilst convex hulling is a very novel volumetric approach to estimating the mass of A.L. 288–1, there are obvious drawbacks. Not only is the application of convex hulling limited to relatively complete skeletons, but it also requires a modern reference dataset of whole body CT scans, preferably of individuals of known body mass. There are several potential candidates for the future application of volumetric mass estimation to fossil hominin and primate material, however. The Regourdou Neanderthal has a considerable proportion of thoracic material preserved, whilst the *Homo erectus* (WT15000) ‘Turkana Boy’ is exceptionally complete (albeit immature, thus requiring an ontogenetic reference dataset). Once fully described, the *Australopithecus* ‘Little Foot’ (Stw 573) may be viable.

Figure 9. A sensitivity analysis of the effect of uncertainty in the size of the trunk region upon body mass estimates. From left to right; original articulated trunk model (light blue), trunk expanded 10% in dorsoventral and mediolateral extent (purple), trunk expanded 20% in dorsoventral and mediolateral extent (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
as will *Homo naledi* (this would currently require a composite, although more complete individuals may be discovered in the future). *Oreopithecus bambolii* (IGF 11778) would require digitization and retrodeformation, but is fairly well represented, likewise *Arhipithecus ramidus* (ARA-VP-6/500), if and when the material becomes publicly available.

Whilst potentially a limiting factor in the past, access to CT facilities is becoming cheaper and more straightforward, and collecting large modern comparative datasets is now entirely feasible. Accessing appropriate cadaveric primate material can indeed be problematic. Yet assuming, as a field, we hold ourselves to the minimum standards and additional best-practices put forward by Davies et al. (2017), the sharing of CT and 3D surface model datasets via online repositories should ensure an ever increasing pool of data to draw from.

Therefore, even in the light of the above limitations, we remain optimistic that volumetric mass estimation has a future role to play in the field of human evolution, most obviously through integration with biomechanical studies of locomotion (Sellers et al., 2017). And although unlikely to replace traditional linear allometric methods, convex hulling ought to complement such studies wherever possible, as a means of validating the feasibility of mass estimates derived by other approaches. Volumetric reconstructions will also prove particularly useful in exploring the impact of changes in bodily dimensions (pelvis width, ribcage shape) on mass sets across evolutionary lineages. In particular, future work should explore the possible effects of ontogeny and sexual dimorphism on volumetric body mass estimates.

Acknowledgments

We would like to thank the editor, guest editor, and two anonymous reviewers for their suggested improvements to the manuscript. The authors would like to acknowledge the Kyoto Primate Research Institute (KUPI), the Visible Human Project, the Cancer Imaging Archive, CARTA, and Morphosource.org for access to datasets. We also thank Doug Boyer (Duke University) for making scans of the A.L. 333 composite skull and AL288-1 pelvis and sacrum available to us. We acknowledge Andrew Kitchener (National Museum of Scotland, Edinburgh) for providing primate datasets. We also thank C. Owen Lovejoy (Kent State University) for providing a reference model of the A.L. 288-1 pelvis used during the preliminary stages and Martin Hauesler for access to his reconstruction, particularly the vertebral column. Data for the vertebral reconstruction were courtesy of Juho Anti-Junno (University of Oulu). Data from Andaman Islanders was collected by T.O.M. with the permission of Robert Kruzenszynski, Natural History Museum London. Aspects of this work were funded by the Natural Environment Research Council (NE/C520447/1, NE/C520463/1 and NE/J012556/1).

Supplementary Online Material

Supplementary online material related to this article can be found at http://dx.doi.org/10.1016/j.jhevol.2017.07.014.

References

